Thursday, August 11, 2022
64.2 F

    Latest Posts

    Two Visions of America by Don Jans

    NASA Invests in 18 Potentially Revolutionary Space Tech Concepts

    Sponsored - Job Posting

    We are a small but mighty business in Ventura, CA specializing in Civil/Agricultural Engineering and Land Surveying. Going strong for over 35 years. Looking for motivated team players for immediate hire. Candidates must have at least 3 years of experience in Civil Engineering, Land Surveying, and AutoCAD Civil 3D. Must want to grow with the company. For the right person, management potential. Wages will depend on experience. Benefits include paid holidays, matching retirement plan & much more. Send resumes to: [email protected]

    YCE, Inc. is an Equal Opportunity Employer. Tel:

    Smart spacesuits and solar surfing may sound like the stuff of science fiction, but they are just two of the technology concepts NASA has selected for further research as part of the NASA Innovative Advanced Concepts (NIAC) program. The program will fund 18 studies to determine the feasibility of early-stage technologies that could go on to change what’s possible in space. 

    The funded technologies have the potential to transform human and robotic exploration of other worlds, including the Moon and Mars. One researcher, for example, will study an affordable way to mine the ample ice at the Moon’s polar regions. NASA aims to send astronauts to land on the Moon’s South Pole in five years. 

    “Our NIAC program nurtures visionary ideas that could transform future NASA missions by investing in revolutionary technologies,” said Jim Reuter, acting associate administrator of NASA’s Space Technology Mission Directorate. “We look to America’s innovators to help us push the boundaries of space exploration with new technology.”

    The latest NIAC selections include Phase I and Phase II awards. The selected Phase I studies cover a wide range of innovations. Each Phase I award is valued at approximately $125,000, helping researchers define and analyze their proposed concepts over nine months. If the initial feasibility studies are successful, awardees can apply for Phase II awards.

    The new Phase I selections are:

    Bioinspired Ray for Extreme Environments and Zonal Exploration (BREEZE)Combines inflatable structures with bio-inspired kinematics to explore and study the atmosphere of Venus
    Javid Bayandor, State University of New York, Buffalo

    Power Beaming for Long Life Venus Surface MissionsNew approach to support a Venus surface mission with power beaming
    Erik Brandon, NASA’s Jet Propulsion Laboratory (JPL), Pasadena, California

    SmartSuitAn intelligent spacesuit design with soft-robotics, self-healing skin and data collection for extravehicular activity in extreme environments that allows for greater mobility for exploration missions
    Ana Diaz Artiles, Texas A&M Engineering Experiment Station, College Station

    Dual Use Exoplanet Telescope (DUET)A novel telescope design to find and characterize planetary systems outside the solar system
    Tom Ditto, 3DeWitt LLC, Ancramdale, New York

    Micro-Probes Propelled and Powered by Planetary Atmospheric Electricity (MP4AE)Similar to the ballooning capabilities of spiders, these floating microprobes use electrostatic lift to study planetary atmospheres
    Yu Gu, West Virginia University, Morgantown

    Swarm-Probe Enabled ATEG Reactor (SPEAR) ProbeAn ultra-lightweight nuclear electric propulsion probe for deep space exploration, designed to keep mass and volume low for commercial launch
    Troy Howe, Howe Industries LLC, Tempe, Arizona

    Ripcord Innovative Power System (RIPS)An investigation of a drag using ripcord unspooling power system for descent probes into planets with atmospheres, such as Saturn
    Noam Izenberg, Johns Hopkins University, Laurel, Maryland

    Power for Interstellar Fly-byPower harvesting from ultra-miniature probes to enable interstellar missions
    Geoffrey Landis, NASA’s Glenn Research Center, Cleveland

    Lunar-polar Propellant Mining Outpost (LPMO)Affordable lunar pole ice mining for propellant production
    Joel Serce, TransAstra Corporation, Lake View Terrace, California

    Crosscutting High Apogee Refueling Orbital Navigator (CHARON)Novel system for small space debris mitigation
    John Slough, MSNW LLC, Redmond, Washington

    Thermal Mining of Ices on Cold Solar System BodiesProposes using a unique heat application on frozen volatiles and other materials for resource extraction
    George Sowers, Colorado School of Mines, Golden

    Low-Cost SmallSats to Explore to Our Solar System’s BoundariesA design for a low-cost, small satellite heliophysics mission to the outer solar system
    Robert Staehle, JPL

    Phase II studies allow researchers to further develop concepts, refine designs and start considering how the new technology would be implemented. This year’s Phase II selections address a range of cutting-edge concepts from flexible telescopes to new heat-withstanding materials. Awards under Phase II can be worth as much as $500,000 for two-year studies.

    The 2019 Phase II selections are:

    The High Étendue Multiple Object Spectrographic Telescope (THE MOST)A new, flexible optical telescope design that can be a deployed in a cylindrical roll and installed upon delivery, on a 3D printed structure
    Tom Ditto, 3DeWitt LLC, Ancramdale, New York

    Rotary-Motion-Extended Array Synthesis (R-MXAS)A geostationary synthetic aperture imaging radiometer with a rotating tethered antenna
    John Kendra, Leidos, Inc., Reston, Virginia

    Self-Guided Beamed Propulsion for Breakthrough Interstellar MissionsAn effort to advance self-guided beamed propulsion technology
    Chris Limbach, Texas A&M Engineering Experiment Station, College Station

    Astrophysics and Technical Lab Studies of a Solar Neutrino Spacecraft DetectorA small-scale neutrino detector study to advance detector technology for future probe missions
    Nickolas Solomey, Wichita State University, Kansas

    Diffractive LightSailsA study to design and advance passive and electro-optically active diffractive films for missions in low-Earth orbit, inner solar orbits and to distant stars
    Grover Swartzlander, Rochester Institute of Technology, New York

    Solar SurfingA materials-science study to determine the best protective materials to enable heliophysics missions closer to the Sun
    Doug Willard, NASA’s Kennedy Space Center, Cape Canaveral, Florida

    NASA selected Phase I and II proposals through a peer-review process that evaluates innovativeness and technical viability. All projects are still in the early stages of development, most requiring a decade or more of concept maturation and technology development.

    For the first time this summer, the NIAC program will select one Phase III research study. The award will be up to $2 million for as long as two years. This final phase is designed to strategically transition a NIAC concept with the highest potential impact to NASA, other government agencies or commercial companies.

    “NIAC is about going to the edge of science fiction, but not over,” said Jason Derleth, NIAC program executive. “We are supporting high impact technology concepts that could change how we explore within the solar system and beyond.”

    NIAC partners with forward-thinking scientists, engineers and citizen inventors from across the nation to help maintain America’s leadership in aeronautics and space research. NIAC is funded by NASA’s Space Technology Mission Directorate, which is responsible for developing the cross-cutting, pioneering new technologies and capabilities needed by the agency to achieve its current and future missions.

    For more information about NASA’s investments in space technology, visit:

    Get Headlines free  SUBSCRIPTION. Keep us publishing – DONATE

    - Advertisement -
    0 0 votes
    Article Rating
    Notify of

    Inline Feedbacks
    View all comments

    Latest Posts


    Don't Miss


    To receive the news in your inbox

    Would love your thoughts, please comment.x